HW4
Greifvögel
Streuobst
Biotoppflege
Ornithologie
Insekten
Sie sind hier: Insekten > Mikrobe des Jahres

 

Die Mikroben des Jahres seit 2014

 
Die Mikrobe des Jahres wird 2014 erstmals benannt. Mikrobiologen der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) wählten sie aus, um auf die Vielfalt der mikrobiologischen Welt hinzuweisen. Während in der Bevölkerung Mikroorganismen vor allem als Krankheitsauslöser bekannt sind, spielen Mikroorganismen eine weit bedeutsamere Rolle für die Ökologie, Gesundheit, Ernährung und Wirtschaft, worauf die Mikrobe des Jahres hinweisen soll.

Die VAAM vertritt rund 3500 mikrobiologisch orientierte Wissenschaftlerinnen und Wissenschaftler aus Forschung und Industrie. Die Bandbreite der Forschung reicht von Bakterien und Pilzen in allen Ökosystemen und in Lebensmitteln über Krankheitserreger bis hin zu Genomanalysen und industrieller Nutzung von Mikroorganismen, ihren Enzymen und Stoffwechselprodukten.

Bisherige Mikroben des Jahres:

Jahr Mikrobe
2014 Nostoc
2015 Rhizobium
2016 Streptomyces
2017 Halobacterium salinarum
2018 Lactobacillus
2019 Magnetospirillum


Die "Mikrobe des Jahres 2019":
Magnetospirillum - Bakterielle Orientierung - anziehend für Zukunftsforschung

Ein magnetisches Bakterium? Mit dieser Entdeckung stieß der Italiener Salvatore Bellini 1963 auf Unglauben. Doch mit der Verbreitung des Elektronenmikroskops bestätigte Richard Blakemore zwölf Jahre später seine faszinierenden Beobachtungen: In Schlammproben sah er Mikroorganismen mit Ketten magnetischer Kristalle. Sie richten sich wie eine Kompassnadel im magnetischen Feld aus.


Magnetospirillum gryphiswaldense in Teilung mit Magnetkristallen (rot) und dem speziellen Cytoskelett (grün) (Aufnahme: M. Toro-Nahulepan / J. Plitzko) Spezielle Enzyme transportieren Eisenionen aus der Umgebung in die Bakterienzelle. Es bilden sich Ketten aus 15 bis 30 Eisenoxid-Kristallen, die zusammen als Magnet wirken.
Magnetospirillum gryphiswaldense in Teilung mit Magnetkristallen (rot) und dem speziellen Cytoskelett (grün). Aufnahme: M. Toro-Nahulepan / J. Plitzko


Ein Zellskelett aus langen Proteinfäden, ähnlich aufgebaut wie unsere Muskeln, hält die Kristalle in der Zellmitte und sortiert sie bei der Zellteilung gleichmäßig.

Zusammen mit einem Sauerstoffsensor orientieren sich die Bakterien so im Wasser. Sie suchen gezielt Schichten mit dem für sie geeigneten geringen Sauerstoffgehalt auf. Die magnetischen Pole der Erde helfen ihnen, sich in der richtigen Wassertiefe auszurichten. Dank der detaillierten Erkenntnisse zur Biosynthese und Funktion der Magnetosomen gilt Magnetospirillum mittlerweile als wichtiger Modellorganismus für die Bildung bakterieller Organellen.

Für Biotechnologie und Medizin bietet Magnetospirillum zudem faszinierende Möglichkeiten: Die winzigen Magnete haben eine einheitliche Größe, Form und hohe Megnetisierung, die synthetische Nanopartikel nicht erreichen. Fremde Moleküle, gekoppelt an die Magnetosomenpartikel können ihnen zusätzliche nützliche Eigenschaften verleihen. In Laborversuchen übertreffen isolierte Magnetosomen die Wirksamkeit kommerzieller magnetischer Kontrastmittel deutlich. Dies macht sie für die Magnetresonanztomographie (MRT) oder Bildgebungsverfahren in Forschung und medizinischer Diagnostik interessant. Magnetosomen erzeugen zudem in Zellen oder Geweben Wärme, wenn ein starkes Magnetfeld angelegt wird - in Tierversuchen ließen sich damit Tumoren verkleinern. Forscher konnten den kompletten Biosyntheseweg aus Magnetospirillum in fremde Bakterien übertragen. So lassen sich möglicherweise Zellen künstlich magnetisieren und entsprechend "steuern".


Magnetische Bakterien leben in Tümpeln und Meeren. Eine Kette winziger Magnete hilft ihnen bei der Orientierung im Wasser. Magnetospirillum gryphiswaldense in Teilung, mit Magnetkristallen (Aufnahme: F. Mickoleit)
Aufnahme: F. Mickoleit Magnetospirillum gryphiswaldense in Teilung, mit Magnetitkristallen


Faszinierende Studien an Magnetospirillum liefern Grundlagen für die Erforschung des Magnetsinns bei Tieren und dienen als Modell für die Biosynthese kleiner Organellen. Mit modernen Methoden verleihen die Forscher den winzigen Magneten zusätzliche Eigenschaften für technische und medizinische Anwendungen, die synthetische Nanopartikel übertreffen.

Ein Magnetospirillum-Forscher der ersten Stunde - Fragen an Prof. Dr. Dirk Schüler von der Universität Bayreuth

Wie entdeckten Sie 1990 das Bakterium Magnetospirillum gryphiswaldense?

Aus Schlamm eines kleinen Flusses isolierte ich als Student im Greifswalder Labor von Manfred Köhler dieses unbekannte, damals schwer zu züchtende Bakterium. Als glückliche Fügung erwies sich zeitgleich der Fall der Mauer. Im Münchner Labor von Karl-Heinz Schleifer und Rudolf Amann untersuchten wir mit modernen Methoden das neuentdeckte Bakterium. Es wurde namensgebend für die Gattung Magnetospirillum.


Prof. Dr. Dirk Schüler von der Universität Bayreuth (Bild: Dirk Schüler) Was fasziniert Sie an Magnetospirillum?

Immer noch, Magnetospirillen unter dem Mikroskop magnetisch einheitlich ausgerichtet umherflitzen zu sehen! Faszinierend sind aber vor allem unsere Entdeckungen: So ist der "Magnet", eine Kette aus Kristallen, komplizierter aufgebaut als vermutet. Unerwartet viele Gene sind an der Synthese und Anordnung der Magnetosomen beteiligt - eine der kompliziertesten Strukturen, die wir aus Bakterien kennen.
Prof.Dr.Dirk Schüler, Uni Bayreuth Bild: Dirk Schüler


Wieso haben die Bakterien eine schraubenförmige Gestalt?

Wahrscheinlich können Sie sich im Bodensediment von natürlichen Gewässern damit rotierend fortbewegen. Es ist auch erstaunlich, wie sie die Magnetkette in ihrem gewundenen Zellkörper verankern. Erst kürzlich haben wir gelernt, dass sie dafür ein besonderes Zellskelett nutzen.

Welchen Vorteil hat die Magnetotaxis für (Mikro-)Organismen?

Die Bakterien leben in tieferen sauerstoffarmen Sedimentschichten. Mit der Ausrichtung am Erdmagnetfeld können sie dem ebenfalls von oben nach unten verlaufenden Sauerstoff-Gefälle besonders leicht folgen. Entlang dieser magnetischen "Schiene" schwimmend  erspüren sie mit Hilfe von Sensorproteinen exakt die Position mit der für sie optimalen, niedrigen Sauerstoffkonzentration.

Nützen diese Erkenntnisse auch der Erforschung des Magnetsinns von Tieren?

Zugvögel, Lache oder Meeresschildkröten orientieren sich ebenfalls im Erdmagnetfeld. Der tierische Magnetfeldsensor ist aber noch unbekannt. Möglicherweise spielen ähnlich wie bei Bakterien winzige Kristalle eines Eisenminerals eine Rolle - neben zusätzlichen, noch unerforschten Mechanismen.

Können Laien magnetotaktische Bakterien finden?

Das ist schwer. Im Gartenteich oder flachen Tümpel finden sich viele verschiedene Arten: Stäbchen, Kugeln, Spiralen. Mit einem Phasenkontrastmikroskop, das wenigstens 100fach, besser 400fach vergrößert, betrachtet man den Rand eines Schlammtropfens, an dem man einen kleinen Stabmagneten hält. Magnetbakterien schwimmen hartnäckig in eine Richtung und sammeln sich am Tropfenrand des magnetischen Südpols. Dreht man den Magneten um, wenden auch die Bakterien.

Welche Anwendungen erhoffen Sie sich von Magnetospirillum?

Wir wollen die biologischen Prozesse verstehen, die zur Bildung der Magnetosomen führen. Deren Materialeigenschaften sind in der DNA-Sequenz der Bakterien verankert. Gentechnisch lassen sich Größe, Form und Magnetisierung ändern. Mit fremden Genen bringen wir die Bakterien dazu, Magnetpartikel mit neuen Eigenschaften zu produzieren: interessante Enzymaktivitäten, Antikörper oder größere geordnete magnetische Strukturen. Dies ist für technische oder biomedizinische Anwendungen von Interesse. Andere Forscher versuchen sogar, lebende Magnetbakterien als Mikroroboter zu verwenden, die sie mit Medikamenten beladen und dann magnetisch gesteuert an den Wirkungsort im Körper, etwa zu Tumoren bringen wollen.


Die Mikrobe des Jahres weist auf die bedeutsame Rolle der Mikroorganismen für die Ökologie, Gesundheit, Ernährung und Wirtschaft hin. Mikrobiologen der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) wählen sie jedes Jahr aus, um auf die Vielfalt der mikrobiologischen Welt aufmerksam zu machen.


Vielen Dank an Frau Dr. Anja Störiko, VAAM, für die Erlaubnis Ihren Pressetext veröffentlichen zu können und die übersandten Bilder zeigen zu dürfen.


zurück



- letzte Aktualisierung: Freitag, 10. Mai 2019 -
Unsere Seiten sind optimiert für Internet Explorer 8.0 und Firefox 3.6 bei einer Auflösung von 1024x768 Pixel
© Umweltfreunde Würzburg - Ochsenfurt 2018